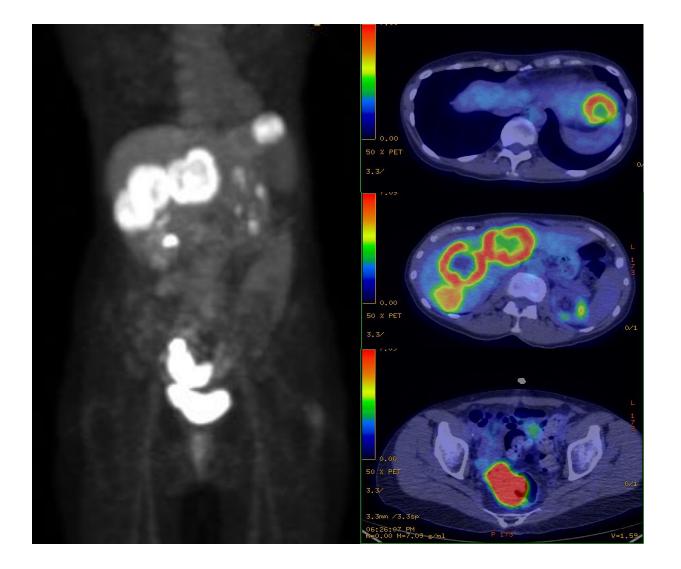
Oncologic & Technical Considerations with Stage IV Liver Disease Sequencing & Synchrony

Sean Cleary Langer Chair Division of General Surgery University of Toronto Hepatobiliary and Pancreatic Surgery University Health Network

Case Presentation

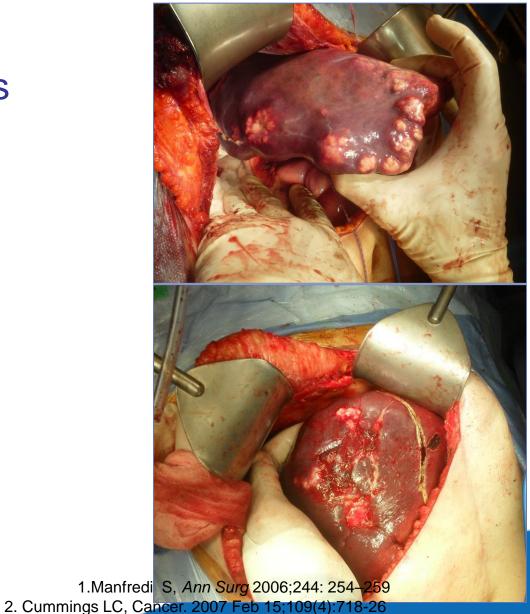
- 63 yo female investigated for mild constipation and abdominal discomfort
- Marked circumferential wall thickening of the recto- sigmoid colon
- Transmural invasion (T3)
- "innummerable bilateral liver metastases"
 Biopsy: Mod Diff AdenoCa
 Kras mut+ Braf wt



Clinical Options

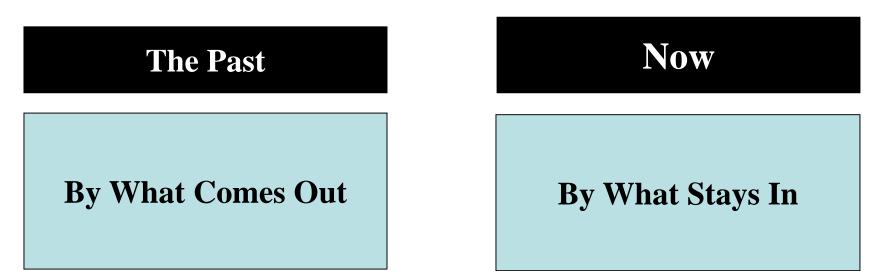
- 1. Resect the rectal lesion, start systemic chemotherapy
- 2. Resect the rectal lesion, resect the liver lesions, start chemotherapy
- 3. Chemoradiotherapy, resect rectal lesion, systemic chemotherapy, resect liver lesions
- 4. Systemic chemotherapy, resect liver and rectal lesions, complete systemic chemotherapy

Liver metastases in colorectal cancer


CRC-LM develop in ~ 30% of patients

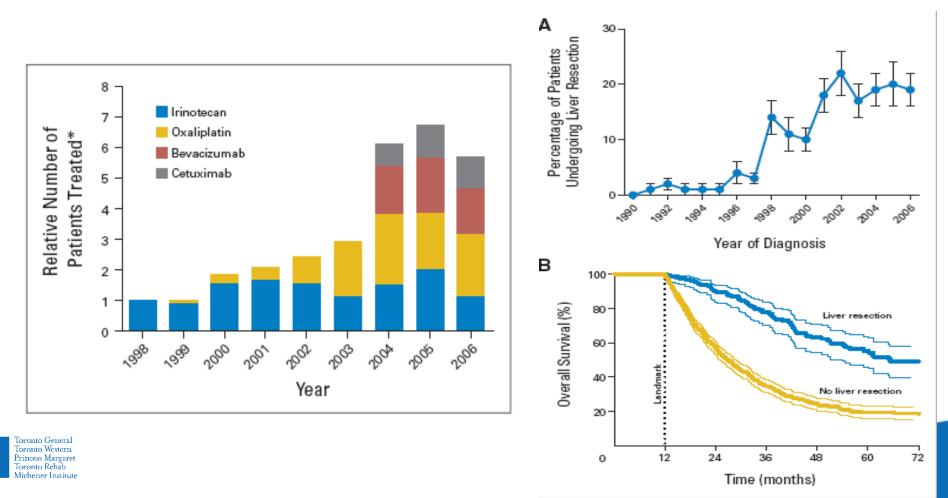
50% synchronous higher risk in Stage III disease (OR 8.3)

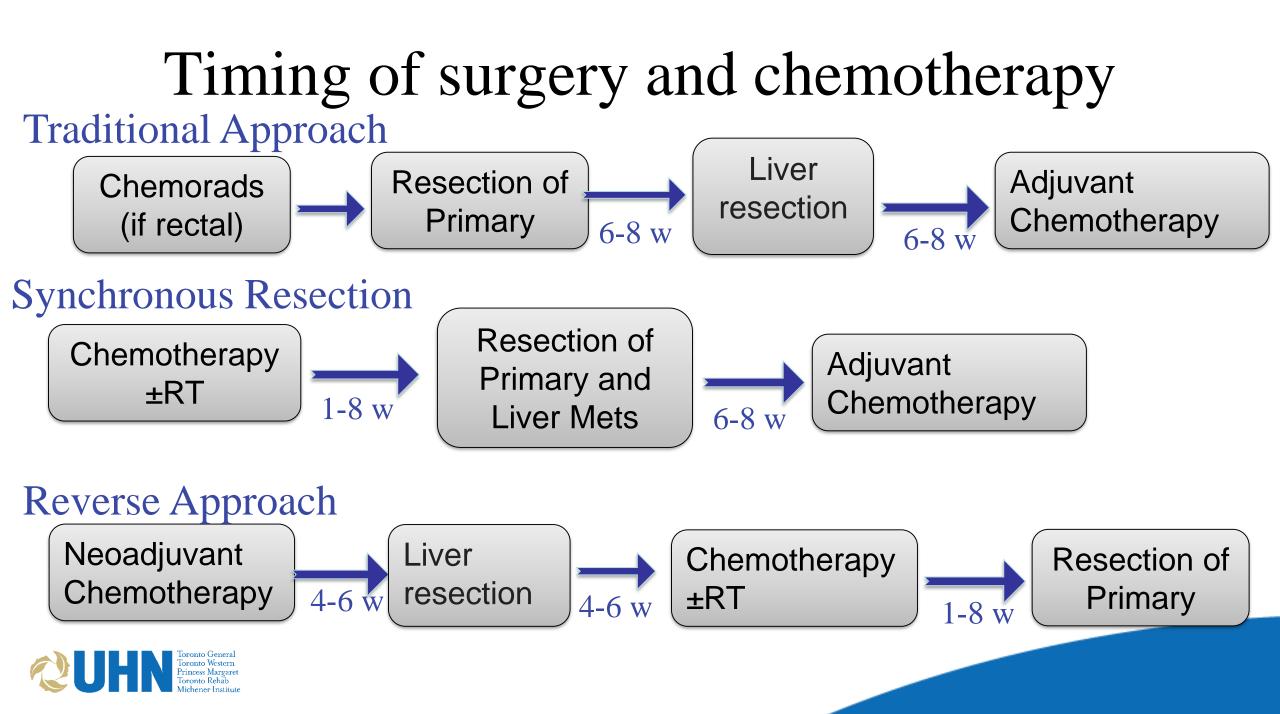
Best treatment is multi-modal


surgery + chemotherapy < 5-10% 5-year OS if untreated^{1,2}

Surgery remains underutilized

Resectability


	AHPBA/SSO/SSAT Consensus criteria for resectability ²							
	Disease characteristics	Liver characteristics	Extra-hepatic disease					
	Any number	R0 margin anticipated	Lung Mets					
	Any size	Liver parenchyma >20-30%	? Lymph nodes?					
Taronto Ge	Any TNM	Maintain vascular supply	? Other sites					
Toronto Ge Toronto We Princess Ma Toronto Re Michener Ir	Any CEA	Preserve biliary outflow						


JOURNAL OF CLINICAL ONCOLOGY

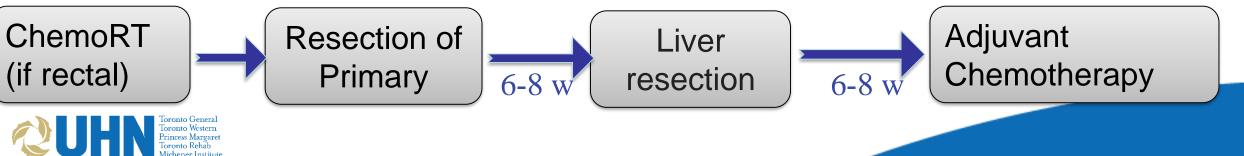
ORIGINAL REPORT

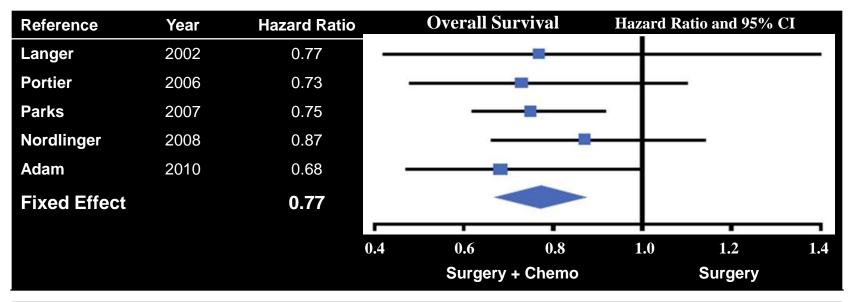
Improved Survival in Metastatic Colorectal Cancer Is Associated With Adoption of Hepatic Resection and Improved Chemotherapy

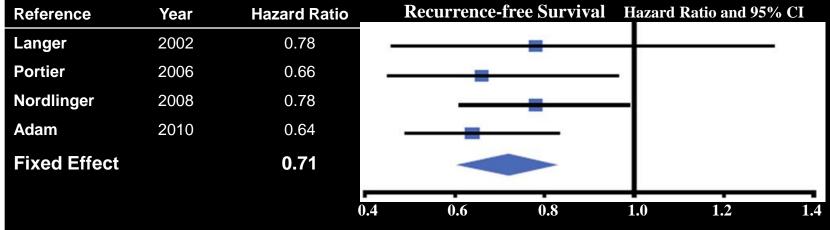
Scott Kopetz, George J. Chang, Michael J. Overman, Cathy Eng, Daniel J. Sargent, David W. Larson, Axel Grothey, Jean-Nicolas Vauthey, David M. Nagorney, and Robert R. McWilliams

Timing of Resection and Chemotherapy

- Traditional Approach
 - Surgery First
 - Chemotherapy (Pseudoadjuvant)
- Perioperative Approach
 - 4-6 cycles of chemotherapy
 - Liver resection
 - Completion of chemotherapy

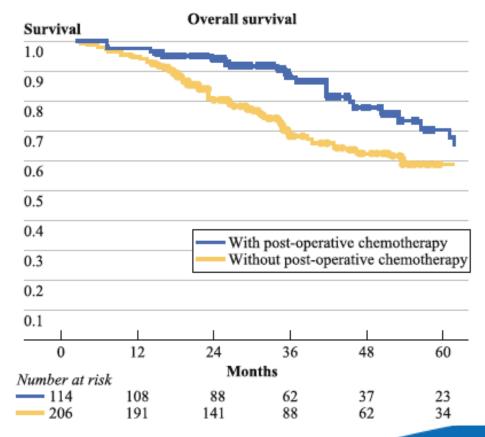



Traditional (surgery first) approach


- Advantages
 - Early resection of primary
 - Eliminates bleeding, obstruction
 - Removes source of metastases
 - Plan liver surgery on original size/location
- Disadvantages
 - Significant delay (>3months) in Systemic chemotherapy
 - Primary symptoms are uncommon
 - Complications may cause future delays
 - Liver mets may progress
 - Less likely if chemo rads includes oxaliplatin
 - Less appealing for advanced LM

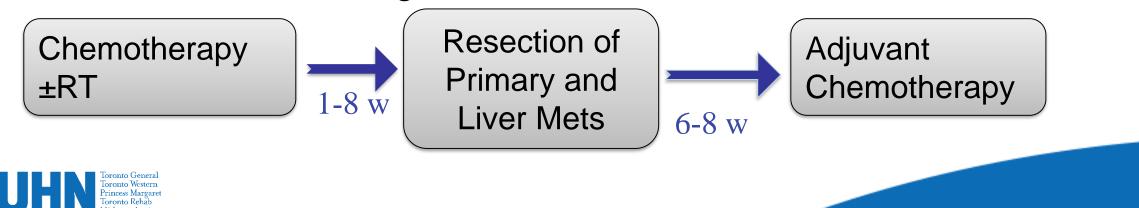
Chemotherapy post Liver Rx (pseudo-adj)

Araujo et al. Ann Surg Oncol 2015;22:3070-3078

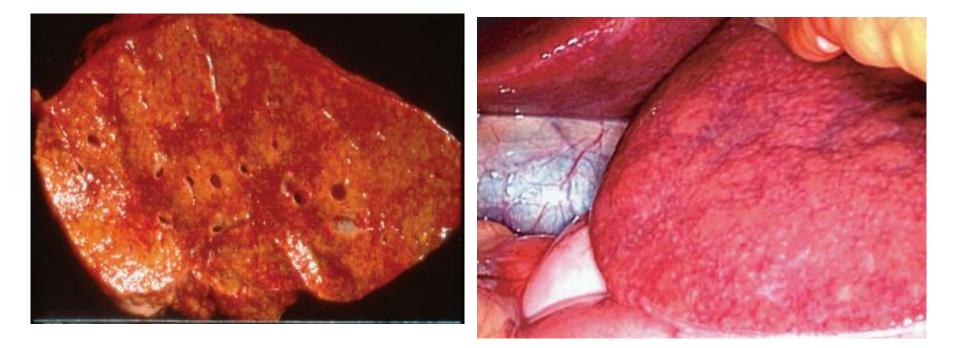

Up-front Hepatic Resection for Metastatic Colorectal Cancer Results in Favorable Long-term Survival

Sulaiman Nanji, MD, PhD¹, Sean Cleary, MD, MSc², Paul Ryan, MD³, Maha Guindi, MD⁴, Subani Selvarajah, MD², Paul Grieg, MD², Ian McGilvary, MD, PhD², Bryce Taylor, MD², Alice Wei, MD, MSc², Carol-Anne Moulton, MD, PhD², and Steven Gallinger, MD, MSc²

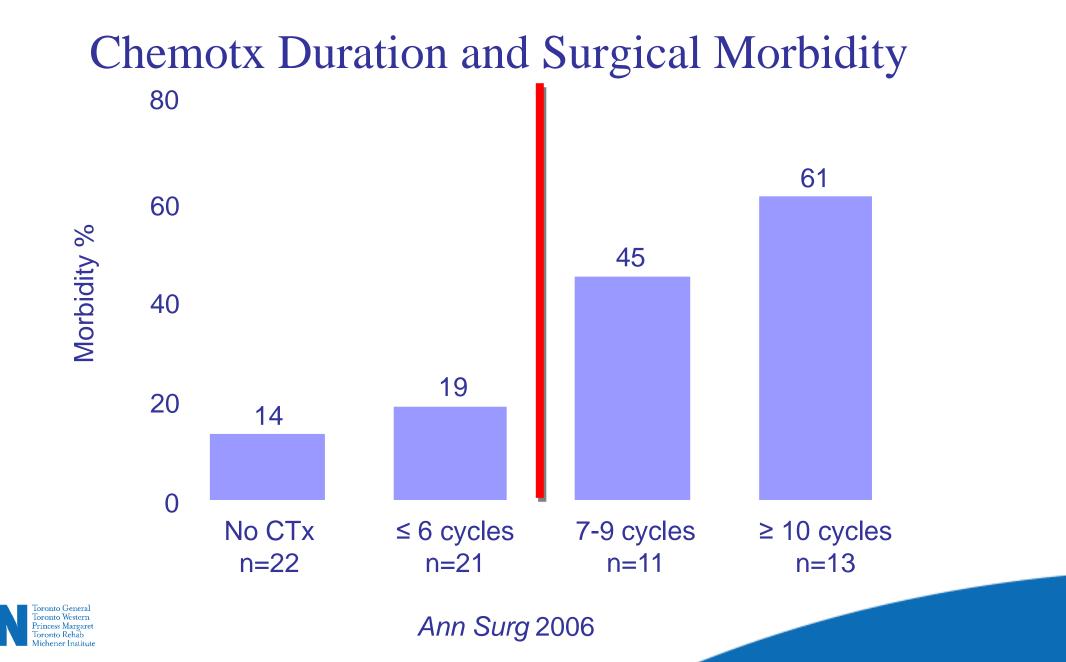
- 320 pts (2002-07)
- 40% synchronous
- 114 (35%) had chemo after Liver Rx
- Disease-Free Survival
 - 3yr: 46%; 5yr: 42%
- Overall Survival
 - 3yr: 64%; 5yr: 55%
- Predictors of OS


Foronto General Foronto Western

- Synchronous mets
- Size of largest lesion
- LN +ve primary
- Post-op chemotherapy
 - HR=0.42 (0.23-0.75)


Perioperative Chemotherapy Approach

- 4-6 cycles of chemotherapy prior to liver resection
 - Limit toxicity
- Potential advantages
 - Assess tumour biology
 - Response to chemotherapy
 - Potential downsizing



Chemotherapy effects

Irinotecan= Steatohepatits Oxaliplatin= Sinusoidal Obstruction

Response to Chemotherapy

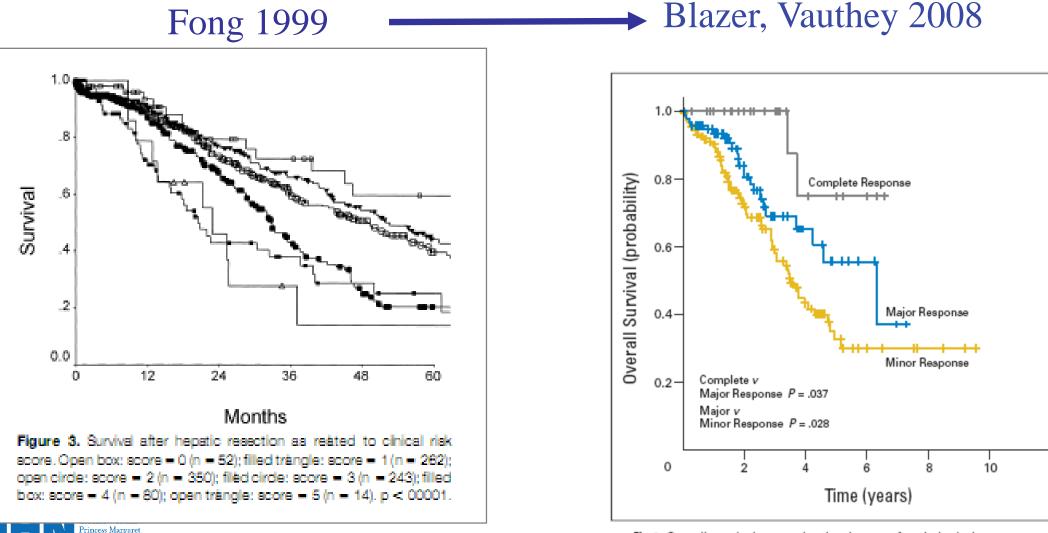
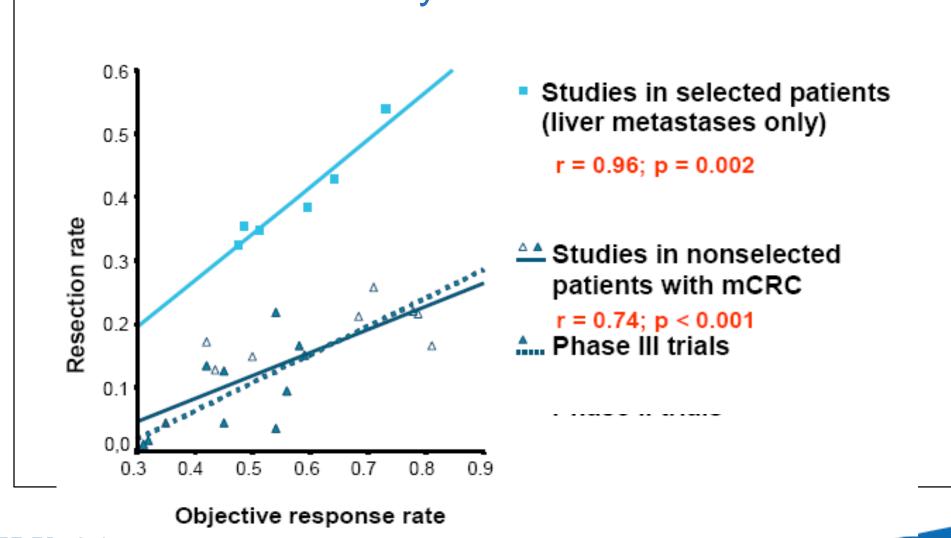
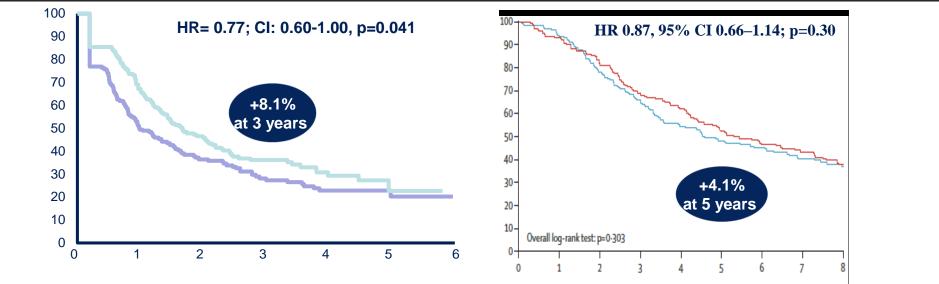



Fig 2. Overall survival curves by the degree of pathological response.

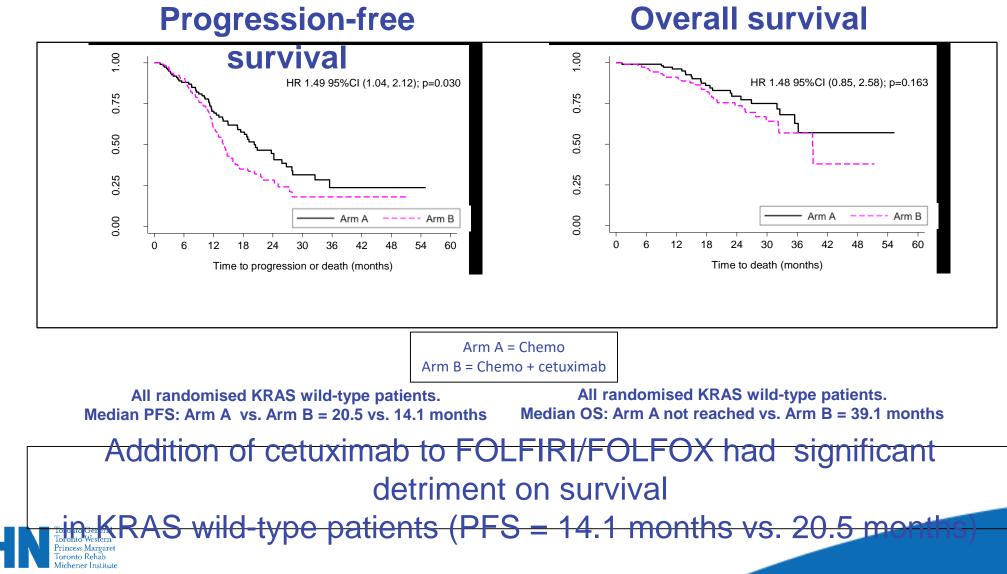
Tumour response to preoperative therapy predicts resectability of liver metastases



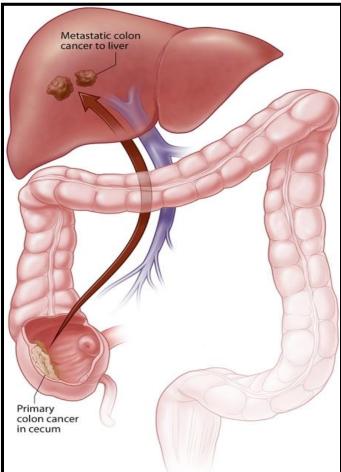
olofecht G. et al. Ann Oncol. 2005

EORTC 40983: EPOC

Patient Population	Primary Endpoint	Secondary Endpoints	Result
mCRC patients with resectable CLM	PFS	OS, Tumour resectability,	Perioperative chemotherapy with FOLFOX4 increased PFS vs. surgery alone
		Tumour response	OS was numerically increased, but not significant


Progression-free survival Overall survival

----- = Periop CT ---- = Surgery alone


New EPOC: Cetuximab + chemotherapy

Primrose J, et al. J Clin Oncol 31, 2013 (suppl; abstr 3504)

Perioperative Approach

- Advantages
 - Early systemic therapy
 - Assess response to chemotherapy
 - Downsizing, improved R0
- Disadvantages
 - Evidence is inconclusive
 - Progression on chemotherapy
 - Management of disappearing lesions

Optimizing Resection in CRC Liver mets

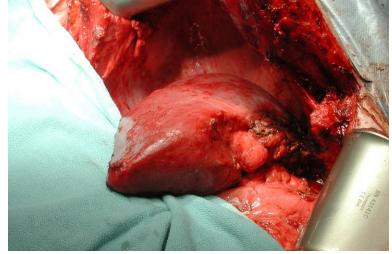
Liver preserving approach

- Parenchymal sparing surgery
- Maximal FRL
- Avoid chemotherapy associated toxicity Options for future resection

Planned sequential surgery

2-stage liver resections Modified sequence → liver first approach ALLPS

Adjuncts to increase resectability Portal Vein embolization Ablation



Synchronous resection

- Advantages
 - Single anesthetic
 - Early systemic chemotherapy
 - Decreased length of stay and costs compared to 2 ORs
- Disadvantages
 - Higher complication rate
 - Anastamotic leaks, infectious complications
 - Intra-op low CVP, post op high portal pressures
 - Major hepatic resections

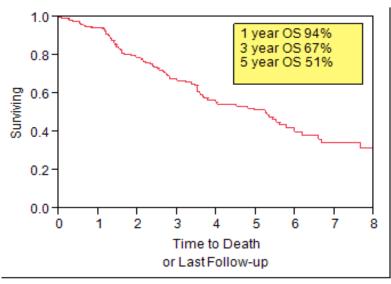
ORIGINAL ARTICLE

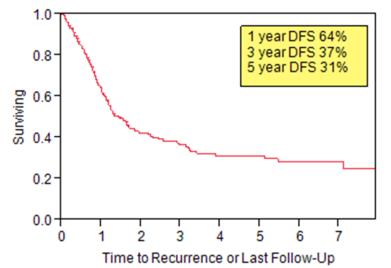
Synchronous resection of colorectal cancer primary and liver metastases: an outcomes analysis

Michael R. Driedger¹, Thomas S. Yamashita¹, Patrick Starlinger¹, Kellie L. Mathis², Rory L. Smoot¹, Sean P. Cleary¹ & David M. Nagorney¹

70% received adjuvant Tx

and major morbidity


associated with OS


Receipt of adjuvant therapy

- 273 Patients (2000-2017)
- 52% colon, 48% rectum
- 62% neoadjuvant Tx
 - 22% SD, 62% PR
- Median 3.4 mets
 - 47% bilobar

Table 4 Postoperative outcomes stratified by extent of surgery

N 30-day Mortality 90-day Mortality Colorectal Liver Major Morbidity Total Morbidity Reoperation Major liver/Major colorectal 24 1 (4.2%) 4 (16.7%) 11 (45.8%) 7 (29.2%) 13 (54.2%) 14 (58.3%) 4 (16.7%) Major liver/Minor colorectal 43 0 2 (4.7%) 7 (16.3%) 8 (18.6%) 10 (23.3%) 19 (44.2%) 2 (4.7%) Minor liver/Major colorectal 92 1 (1.1%) 1 (1.1%) 27 (29.3%) 2 (2.2%) 13 (14.1%) 37 (40.2%) 6 (6.5%) Minor liver/Minor colorectal 114 1 (0.9%) 20 (17.5%) 6 (5.3%) 16 (14.0%) 6 (5.3%) 4 (3.5%) 37 (32.5%) Total 273 3 (1.1%) 11 (4.0%) 65 (23.8%) 23 (8.4%) 52 (19.0%) 107 (39.2%) 18 (6.6%)

ORIGINAL ARTICLE

Minimally invasive vs. open approach to the simultaneous treatment of colorectal tumors with synchronous liver metastasis: a single center, propensity-score matched analysis from Mayo clinic

Guido Fiorentini¹, Andrea Zironda¹, Giacomo Calini², Solafah Abdalla², David M. Nagomey¹, Susanne G. Warner¹, Rory L. Smoot¹, Kevin T. Behm², Sherief F. Shawki², Kellie L. Mathis², Robert A. Vierkant³, David W. Larson² & Sean P. Cleary¹

Table 1 Characteristics of the study population

	Defens metables			After metables			
	Before matching			After matching			
	MIS (n = 43)	Open (n = 341)	P-value	MIS (n = 43)	Open (n = 86)	P-value	
Gender, M, n (%)	24 (55.8)	197 (57.8)	0.743	24 (55.8)	52 (60.5)	0.705	
Age, median (IQR), year	57 (49, 63)	55 (48, 64)	0.841	57 (49, 63)	55 (47, 63)	0.691	
BMI, median (IQR), kg/m ²	28.0 (25.2, 32.4)	27.0 (23.9, 30.0)	0.102	28.0 (25.2, 31.5)	28.8 (25.4, 32.4)	0.520	
ASA score, n (%)	20 (46.5) 23 (53.5)	225 (66.0) 116 (34.0)	0.019	20 (46.5) 23 (53.5)	45 (52.3) 41 (47.7)	0.578	
• 1, 2 • 3, 4							
Localization, n (%)	23 (53.5) 20 (46.5)	187 (54.8) 154 (45.2)	0.745	23 (53.5) 20 (46.5)	56 (65.1) 30 (34.9)	0.251	
Colon Rectum							
Neoadjuvant chemotherapy, n (%)	40 (93.0)	235 (68.9)	<0.001	40 (93.0)	54 (62.8)	<0.001	
Neoadjuvant radiotherapy, n (%)	14 (32.5)	76 (22.3)	0.125	14 (32.5)	15 (17.4)	0.075	
Type of liver resection, n(%) • Major • Minor	6 (14.0) 37 (86.0)	134 (39.0) 207 (61.0)	<0.001	6 (14) 37 (86)	12 (14) 74 (86)	1	

Table 3 Postoperative morbidity and mortality

	MIS ($n = 43$)	Open ($n = 86$)	P-value
Duration of hospital stay, median (IQR), days	4 (3-5)	6 (5-8)	0.001
Overall complications, n (%)	16 (37.2)	32 (37.2)	1.000
Overall complications $CD \ge 3$, <i>n</i> (%)	5 (11.6)	13 (15.1)	0.187
 Liver specific complications CD ≥ 3, n (%) Bile leak Perihepatic abscess 	3 (7.0) 1 (2.3) 1 (2.3) 1 (2.3)	4 (4.7) 2 (2.3) 2 (2.3) 0 (0.0)	0.859
Ascites Transient liver failure	0 (0.0)	0 (0.0)	
Bowel specific complications CD ≥ 3, <i>n</i> (%) • Ileus • Abscess • Anastomotic leak	2 (4.7) 0 (0.0) 1 (2.3) 1 (2.3)	8 (9.3) 2 (2.3) 6 (6.9) 0 (0.0)	0.494
Reoperation due to complications, n (%)	0 (0.0)	5 (6.1)	0.132
Delay of adjuvant therapy due to complications, n (%)	3 (7.1)	10 (11.9)	0.555
30-days mortality, n (%)	0 (0.0)	0 (0.0)	NA
90-days mortality, n (%)	1 (2.3)	2 (2.3)	1.000

Synchronous Hepatic Metastases

Length of Hospitalization -Concomitant vs Staged Resection

Study	Concomitant			Staged		Weight	Mean Difference		
	Mean [days]	SD [days]	Total	Mean [days]	SD [days]	Total	(%)	IV, Random 95% CI [days]	Mean Difference
Chua 2004	11.4	6.7	64	22.4	17.6	32	4.2	-11.00 [-17.32, -4.68]	
Jaeck 1999	17	10	28	15	5	31	6.1	2.00 [-2.10, 6.10]	
Luo 2010	8	2	129	14	2.75	276	9.2	-6.00 [-6.47, -5.53]	•
Martin 2003	10	8.25	134	18	8.5	106	8.1	-8.00 [-10.14, -5.86]	
Martin 2009	10	14.5	70	18	8	160	6.6	-8.00 [-11.62, -4.38]	
Petri 2010	13.1	7	14	11.7	6	29	5.9	1.40 [-2.87, 5.67]	
Reddy 2007	8.6	1.8	135	12.6	2.5	475	9.2	-4.00 [-4.38, -3.62]	•
Slupski 2009	12	4	28	15	3.5	61	8.5	-3.00 [-4.72, -1.28]	
Tanaka 2004	25.6	10.4	39	23.1	10.3	37	5.6	2.50 [-2.15, 7.15]	
Thelen 2007	20.05	8	40	19.85	30.7	179	5.1	0.20 [-4.94, 5.34]	
Vassillou 2007	12	6	25	20	8	78	7.3	-8.00 [-10.95, -5.05]	•
Vogt 1991	15	1.3	19	26	1.2	17	9.0	-11.00 [-11.82, -10.18]	
Weber 2003	17	9	35	16	7	62	6.8	1.00 [-2.45, 4.45]	
Yan 2007	7	2.3	73	15	4.5	30	8.5	-8.00 [-9.69, -6.31]	
Total (95%CI)			833			1573	100	-4.64 [-6.38, -2.90]	
Heterogeneity: Tau ² = 8.53 Chi ² = 320.66, df = 13 (p < 0.00001); l ² = 96% Test for overall effect: Z = 5.23 (P < 0.00001)							-10 -5 0 5 10 Favors Favors Concomitant Staged		

Yin et al. Hepatology, 2013

Synchronous Hepatic Metastases 5-Year Overall Survival Concomitant vs Staged Resection

Study	Log (Hazard Ratio)	SE	Concomitant Total	Staged Total	Weight	Hazard Ratio IV, Fixed, 95% Cl	Hazard Ratio
Capussotti 2007	0.25	0.25	70	57	13.4	1.28 [0.79, 2.10]	
Chua 2004	0.21	0.26	64	32	12.4	1.23 [0.74, 2.05]	+-
Slupski 2007	0.03	0.33	28	61	7.7	1.03 [0.54, 1.97]	
Tanaka 2004	-0.5	0.38	39	37	5.8	0.61 [0.29,1.28]	
Thelen 2007	-0.39	0.28	40	179	10.7	0.68 [0.39, 1.17]	-
Turrini 2007	-0.13	0.19	57	62	23.2	0.88 [0.61, 1.27]	-
Vogt 1991	-0.09	0.48	19	17	3.6	0.91 [0.36, 2.34]	
Weber 2003	0.2	0.25	35	62	13.4	1.22 [0.75, 1.99]	-
Yan 2007	-0.13	0.29	73	30	9.9	0.88 [0.50, 1.55]	
Subtotal (95%CI)			425	537	100.0	0.97 [0.81, 1.16]	+ + + + + + + + + + + + + + + + + + + +
Heterogeneity: Chi ² = 6 test for overall effect: 2	0.02 0.1 1 10 50 Favors Favors Concomitant Staged						

Yin et al. Hepatology, 2013

Liver First Approach

- Advantages
 - Metastatic disease is primary determinant of outcome
 - Early systemic chemotherapy
 - Symptoms/progression of primary is uncommon (5%)
 - Most advantageous for rectal primary and advanced LM
 - Long course radiation
- Disadvantages
 - 20% will not have primary resection
 - Disease progression or complications

Surgical Management of Patients with Synchronous Colorectal Liver Metastasis: A Multicenter International Analysis

Sipe C Mayo, MD. MPH, Carlo Pulitano, MD, Hugo Marques, MD, Jorge Lamelas, MD,

JACS 2013

- 1004 Pts synchronous liver mets, 4 centres
- 64% Traditional, 33% Synchonous, 3% Liver first
 - Liver first-higher rates of Rectal Ca, bilateral LM and pre-op chemo
- No difference in morbidity or mortality
- Multivariate analysis: male sex, rectal primary and RFA associated with worse OS

• 5yr OS 44%

Thirty-Day Morbidity after Simultaneous Resection of Colorectal Cancer and Colorectal Liver Metastasis: American College of Surgeons NSQIP Analysis

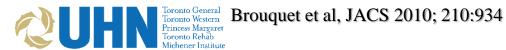
Rebecca A Snyder, MD, MPH, FACS, Scarlett Hao, MD, William Irish, PhD, MSc, Emmanuel E Zervos, MD, FACS, Janet E Tuttle-Newhall, MD, FACS, Alexander A Parikh, MD, MPH, FACS

JACS 2020 ePub

Table 2. Thirty-day Morbidity for Overall Cohort

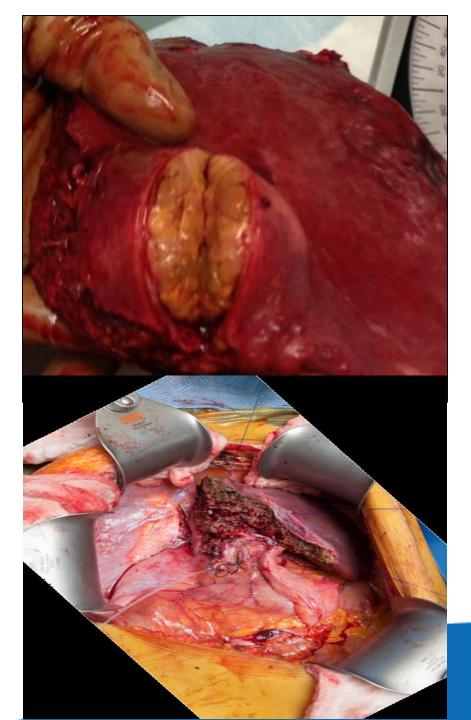
Variable	Isolated colon resection, $n = 23,643$	Isolated liver resection, $\mathbf{n=7,}462$	$\begin{array}{l} \mbox{Simultaneous resection,} \\ \mbox{n} = 592 \end{array}$	p Value
Overall composite 30-day morbidity, n (%)	5,249 (22.2)	1,275 (17.1)	177 (29.9)	< 0.001
95% CI	21.7-22.8	16.2-18.0	26.2-33.8	
LOS > 30 d, n (%)	246 (1.0)	42 (0.6)	12 (2.0)	< 0.001
Readmission, n (%)	2,938 (12.4)	710 (9.5)	87 (14.7)	< 0.001
Median LOS, d, (IQR)	6 (4, 8)	5 (4, 7)	7 (6, 10)	< 0.001
Mortality within 30 d, n (%)	291 (1.2)	73 (1.0)	7 (1.2)	0.209

Table 3. Postoperative Complication Rates for Targeted Colectomy and Hepatectomy Cohorts


Variable	Isolated colon resection: colectomy module, n = 9,774	$\begin{array}{l} \mbox{Simultaneous}\\ \mbox{resection:}\\ \mbox{colectomy module,}\\ \mbox{n}=140 \end{array}$	p Value	Isolated liver resection: hepatectomy module, n = 5,479	Simultaneous resection: hepatectomy module n = 265	p Value
Procedure-specific complication, n (%)	2,025 (20.7)	52 (37.1)	<0.001	524 (9.1)	38 (14.3)	0.007
Anastomotic leak	372 (3.8)	11 (7.9)	0.024	_	_	_
Postoperative ileus	1,864 (19.1)	51 (36.4)	< 0.001	_	_	-
Postoperative bile leak	-	_	-	359 (6.2)	22 (8.3)	0.195
Postoperative liver failure	_	_	-	219 (3.8)	23 (8.7)	<0.001
Grade A	-	-	_	96 (1.7)	16 (6.0)	
Grade B	-	-	_	89 (1.5)	5 (1.9)	
Grade C	_	_	_	34 (0.6)	2 (0.8)	

Synchronous Hepatic Metastases

Survival after Liver-Directed Operations (mo) Three Operative Approaches



Mayo et al, JACS 2013; 216:707

Summary

- Different approaches based on timing of surgery, chemotherapy and radiation
 - CRC first
 - Simultaneous resection
 - Liver first
- Metastatic disease and systemic chemotherapy are main determinants of outcome
- Selection of approach depends on:
 - Location of primary and need for ChemoRT
 - short vs long course
 - Extent of LM and hepatic resection required.

THANK YOU.....

